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Modeling Crowd Evacuation via Behavioral
Heterogeneity-Based Social Force Model

Wenhan Wu

Abstract— With the increasing scale of crowds in public places,
the study of modeling crowd evacuation has become a significant
research field. However, most previous research ignores to incor-
porate behavioral heterogeneity of individuals into the modeling
framework, making it hard to replicate more realistic evacuation
processes. Therefore, a behavioral heterogeneity-based social
force model (BHSFM) is proposed to reveal the heterogeneity
characteristics from the aspect of individual behavior. Numerical
experiments show that the BHSFM provides a general mathemat-
ical framework for describing behavioral heterogeneity and forms
a more reasonable and elaborate evacuation process. Notably,
some interesting evacuation phenomena can emerge by integrat-
ing the behavioral heterogeneity coefficient with temporal-spatial
dynamic risk indexes. Compared with the social force model
(SFM), higher frequencies of small-scale displacements are per-
formed by BHSFM due to more pushing behaviors. Furthermore,
the periods and areas of a potential crowd disaster are revealed
by our model under different numbers of pedestrians, which
has important guiding significance for formulating reasonable
evacuation schemes in specific scenarios.

Index Terms— Crowd dynamics, social force model, behavioral
heterogeneity, crowd evacuation, nonlinear system.

I. INTRODUCTION

T IS well-known that the process of crowd evacuation is

complicated and risky, there is an urgent need to address
corresponding traffic and safety problems [1]. However,
evacuation drills and controlled experiments are difficult to
reproduce real human collective behaviors under emergency
conditions, which brings great challenges to the study of crowd
evacuation [2]. Fortunately, the research field of computational
social science, which involves different disciplines such as
physics, sociology, biology, behavioral science and computer
science, etc., has already brought key insights about the
modeling of crowd evacuation [3]. Therefore, establishing
a more realistic model for crowd evacuation in emergency
situations is a significant issue.

Different theories exist in literatures regarding simulation
models of crowd evacuation, which have been developed
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following two directions. One direction emphasizes that large-
scale crowds can be modeled analogously to gas kinetics or
fluid dynamics [4], whose movements are described by partial
differential equations like the Boltzmann-like equations [5]
and the Navier-Stokes equations [6]. This kind of model
effectively reveals the collective patterns of crowds from a
macroscopic perspective, but more detailed characteristics of
individuals are neglected [7]. Another opposite direction is
modeling crowd evacuation from a microscopic aspect, and
typical microscopic models cover the queueing model [8],
social force model (SFM) [9], cellular automata model [10],
and lattice gas model [11]. These models are beneficial to elu-
cidate the behaviors and interactions between individuals [12],
which successfully depict a lot of interesting self-organization
phenomena [13] found in empirical observation such as the
herding effect [14], freezing by heating [15], and stop-and-go
waves [16], [17]. Despite all this, little is known about how the
behavioral heterogeneity of pedestrians performs in the above-
mentioned models, which is essential to precisely characterize
the process of crowd evacuation.

Understanding the heterogeneity characteristics in collec-
tive motion has been an active field of research [18], [19].
In terms of experimental studies, Cao et al. [20] performed
well-controlled experiments to reveal the influence of age
heterogeneity on pedestrian dynamics. Fujita et al. [21]
designed experiments on pedestrian movement at different
speeds and discovered the heterogeneous speed could interfere
with spontaneous lane formation. Subaih et al. [22] indicated
that the differences in gender and culture have an impact
on movement features by conducting multiple experiments.
With regard to discrete models, Guo et al. [23] developed
a heterogeneous lattice gas model, in which the update rule
depends on the local crowd density and the exit congestion
degree. Hrabdk et al. [24] introduced velocity, aggressiveness,
and sensitivity to occupation as heterogeneity features into
the cellular automata model. However, the above discrete
models lack the accuracy of dynamics, making it difficult to
reveal the mechanical mechanism of individual behaviors [25].
Regarding continuous models, Cao et al. [26] established an
improved SFM that incorporates the difference in the stress
level of evacuees based on their specific surrounding environ-
ments. Ma et al. [27] analyzed nine strategies of assigning
the parameter of desired speed in SFM to indicate indi-
vidual diversity. Nonetheless, these models are often lim-
ited to a specific perspective, therefore forming a universal
framework for measuring heterogeneity characteristics is
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challenging [28]. Recently, Wu et al. [29] proposed a pedes-
trian heterogeneity-based social force model (PHSFM) by
introducing the physique and mentality coefficients, whereas
it remains unclear how physiology and psychology attributes
jointly affect the behavioral heterogeneity. Even less is known
about whether there is any general mathematical form of the
behavioral heterogeneity [30].

To achieve a microscopic description of the behavioral
heterogeneity in modeling crowd evacuation, we develop a
behavioral heterogeneity-based social force model (BHSFM).
The emergency environments and individual differences in
aspects of physiology and psychology are integrated to deter-
mine the expression of behavioral heterogeneity coefficient.
That is, this coefficient provides a more comprehensive math-
ematical framework to reveal the characteristics of behavioral
heterogeneity by affecting the desired speed of pedestrians.
Given that large-scale crowds frequently gather in subway
stations, the Heping Xiqiao subway station is selected as a sim-
ulation scenario for crowd evacuation in emergency situations.
Numerical experiments corroborate that the BHSFM displays
a more realistic and elaborate evacuation process, and the
behavioral heterogeneity coefficient has a significant impact
on crowd evacuation. Influenced by temporal-spatial dynamic
risk indexes, the BHSFM successfully achieves interesting
phenomena in good agreement with empirical observations.
Compared with the SFM, higher frequencies of small-scale
displacements simulated by our model are attributed to more
pushing behaviors. Moreover, the BHSFM determines the
periods and areas of a potential crowd disaster under different
numbers of pedestrians, which provides crucial guidance for
crowd management in specific scenarios.

The rest of this paper is organized as follows. Section II
reviews the conceptions of risk index, physique coefficient,
and mentality coefficient. In Section III, the BHSFM is pro-
posed to simulate the behavior heterogeneity of pedestrians
during evacuation process. Section IV presents corresponding
numerical experiments. Finally, the main conclusions and
perspectives for future research are illustrated in Section V.

II. PRELIMINARIES

In this section, we recall the conceptions of risk index,
physique coefficient, and mentality coefficient proposed in the
previous model [29], which has successfully performed special
behavior patterns caused by pedestrian heterogeneity.

A. Risk Index

There is evidence that pedestrian behaviors in response to
emergency situations are related to the perceived environmen-
tal risks [31]. Therefore, the risk index A € [0, 1] is introduced
as a quantitative indicator to measure the degree of emergency.
In this case, the specific value of the risk index A can be
evaluated according to different types and scales of incidents.
Note that the risk index 1 is closer to 1 if the emergency
situation is life-threatening, and otherwise tends to O in a
non-emergency situation. For simplicity of description, the
interval of risk index A is divided into three parts, including
the mild level 4 € [0, 0.3), moderate level 4 € [0.3,0.7], and
severe level A € (0.7, 1]. The risk index is embedded into the
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following physique and mentality coefficients to reflect the
impact of the environment on pedestrians.

B. Physique Coefficient

The physique coefficient reflects the physiology attributes
with high stability, accompanied by a slight fluctuation effect
in emergency situations [32]. In this case, the physique coef-
ficient P; (¢) of pedestrian i at time ¢ is approximated by one-
dimensional Brownian motion:

P (t + At — P; (1) ~N(0, /let) (1)

where At indicates the time step and A (-) represents the
normal distribution.

Given that the initial circumstances, the Beta distribution
is adopted to assign physique coefficients for heterogeneous
pedestrians. Assuming a random variable X; ~ Beta (a, ),
the probability density function is given by:

) _ F((l-f-ﬂ) a—1 _ . \f-1
fx; (xila, B) = F(a)r(ﬂ)xi (I —x) (2)
where o and f are positive numbers, I' (-) represents the
Gamma function. Then, the physique coefficient of pedestrian
i at the initial time 7y is deduced by transforming the random
variable X; as the location-scale family:

g (D) = {P; (10)| Pi (to) = p + 0xi, x; € D} 3)

Here, g : D — R is a mapping function on the interval D =
[0, 1]. The location parameter x4 € R4 limits the lower bound,
and the scale parameter ¢ € R4 determines the interval range.

With regard to the fluctuation interval of P; (¢), empirical
data in gait dynamics theory [33] provides a reasonable
evaluation as P; (t) € [(1 —Ap)P; (o), (1+ Ap) Pi(t0)],
where A p represents the maximum fluctuation range.

C. Mentality Coefficient

The mentality coefficient illustrates the state transition of
stress, cooperation, and competition, permitting a more elabo-
rate psychology expression in pedestrian heterogeneity. Thus,
the mentality coefficient of pedestrian i at time ¢ is expressed
as follows:

M; () =5 () [(1 = Ap) +2Ap i (1)) 4)

Here, the stress s; () is defined as a basic state, which
can be transformed into cooperation or competition through
the state transition function w; (f), and Ay represents the
maximum mutation. For further aspects regarding Equation (4)
are illustrated below.

The stress s; (f) of pedestrian i consists of environmental
risks and panics caused by pedestrian counterflows, which is
given by the following:

si (1) = exp () {[1 = pi D167 + pi () ™} ()

Here, 5?‘” = v;"”/v? and (Sl‘.nax = vl‘.nax/v?, where v? is the
initial desired speed in that paper, v;*" is the desired speed
in normal and v;"** the maximum desired speed in panic. The

panic parameter p; (1) = 1 — 0; (t)/v;w’ is used to measure

Authorized licensed use limited to: Tsinghua University. Downloaded on November 02,2023 at 22:28:12 UTC from IEEE Xplore. Restrictions apply.



15478

the impatience, where v7°" is regarded equivalent to v? and

the same for each pedestrian.
Inspired by the neuron activation response [34], the state
transition function y; (¢) is expressed by the Sigmoid function:

1
1+ exp [—7ipi (1) [ku]

where kj; indicates its slope, p; (t) is the pedestrian density
in the personal zone, defined as the following:

pi (t) = ni (1) /m7? (7)

where the shape of the personal zone is a circular area with
a radius 7; &~ 4r;, and n; (t) is the number of pedestrians in
this zone. The transition of psychology state occurs when the
pedestrian density in the personal zone changes [35]. Besides,
the random variable #; of psychological state selection reads:

L1y (2)
;= 8
I o ®

Here, the cooperation probability y; (A1) of pedestrian i
is assumed to follow a Boltzmann-like relation, y; (1) =
yo exp (—w; A), where yo denotes the cooperation probability
in non-emergency situations and w; is the attenuation rate,
whose value is pedestrian dependent.

wi (1) = (6)

III. MODEL
A. Behavioral Heterogeneity Coefficient

The behavioral heterogeneity of pedestrians is comprehen-
sively reflected by the above-mentioned risk index, physique
coefficient, and mentality coefficient. However, how to incor-
porate these factors remains unsettled. In this section, we are
committed to exploring an appropriate expression of the
behavioral heterogeneity coefficient.

Recall the expression of stress s; () in mentality coefficient,
Equation (5) can be decomposed into two parts, which origi-
nate from the environment and individuals:

si (1) = sE™ () x si™ (1) )

where 57" (t) = exp (4) denotes the stress from environmental
risks, and s;”d (t) indicates the stress from panics caused by
pedestrian counterflows:

'O == pi 01 + pi (™ (10)

where pedestrian i tends to approach *** if the panic para-
meter p; (¢) increases, and otherwise adapts to 67"

Defining a scale factor as 6; = " /oP% = plio" [pmax,
which is the ratio of the desired speed in normal and the
maximum desired speed in panic. Thus, Equation (10) is
rewritten in the form as follows:

sid (1) = [1 — p; ()]10;0™ + p;i (1) O"™ (11)

In general, the scale factor ¢; is a constant. However, 5;“‘”‘
should not be regarded as the same for each pedestrian,
because the maximum desired speed »"** in panic is con-
strained by physiology attributes. Naturally, an idea occurs that
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TABLE I
SETTING OF PARTIAL PARAMETERS IN BHSFM

Symbol Description Value

m; Pedestrian mass 80 kg

v? Initial unit speed 1ms~1

T Relaxation time 0.5s

A; Constant 1 2-103 N
B; Constant 2 0.08 m

T Pedestrian radius 0.25 ~0.35m

k Body elasticity coefficient 1.2-10% kgs—2

K Sliding friction coefficient 2.4-10°% kgm—1s~ 1
At Time step 0.04 s
Ap Maximum fluctuation range 0.1
VAN Maximum mutation 0.5

kar Mutation slope 0.1

Yo Non-emergency cooperation probability 0.95

o' is assumed to be positively correlated with the physique

coefficient P; (t), which is defined as a linear form:

o =¢Pi (1) (12)

where ¢ is a positive correlation factor, and we hold £ = 1 in
this article. In this case, 0" and v;"*" depend on the physique
coefficient of pedestrian i, also the panic parameter p; (¢) is
pedestrian dependent. Then, the stress that includes physiology
heterogeneity is expressed by:

st (1) = exp (W) {[1 — pi ()16 P; (t) + pi (t) P; (1)}

In view of the derivation and discussion of aforementioned
equations, the physique coefficient is successfully embedded
as a part of the mentality coefficient. Therefore, the behavioral
heterogeneity coefficient H; (¢) is defined as follows:

Hi (1) =s () [(1 — Ay) + 28 yi (1)]

Here, Equation (14) is a more comprehensive expression,
revealing the behavioral heterogeneity caused by the combined
effect of emergency environments and individual differences
in terms of physiology and psychology.

13)

(14)

B. Behavioral Heterogeneity-Based Social Force Model

In accordance with the behavioral heterogeneity coefficient
defined above, the BHSFM is given by the following Langevin
equation:

midVCzit(t) = fifil + Z fij + Zfiw
JGED w
Here, the dynamic changes in pedestrian acceleration are
dominated by the combined effect of forces.
The first term filj reflects the self-driven force of pedestrians
moving towards the destination:

¢H -H,' (t)v?e?—v,- ®)

id = Mi

5)

(16)
Ti

where pedestrian i adapts the actual speed v; (¢) to the desired

speed H; (1) v? and desired direction e? within a certain

relaxation z;, the coefficient H; (t) is added to reflect the

behavioral heterogeneity by affecting the desired speed.
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Schematic diagram of the simulation scenario. (a) 3D Max structure diagram of Heping Xiqiao subway station in Beijing. (b) Simplified 2D floor

plan of (a) for evacuation simulation. The first floor is 90 m length and 15 m width, and the second floor is 75 m length and 15 m width.

The second term f;; illustrates the interaction force between
pedestrian i and j:

fij = Aiexp [(rij — dij) / Bi] mij + kg (rij — dij) my;
+kKg (r,-j — d,‘j) Av;it,-j

where A,‘ exp [(I’,‘j — d,‘j)/B,‘] n;;, kg (r,-j — d,‘j) n;;, and
xg (rij — dij) Av'ti; correspond to a repulsive interaction
force, a body force, and a sliding friction force between
pedestrian i and j. In repulsive interaction force, A; and B;
are constants, r;; and d;; respectively refer to the radius sum
and the distance between the centroids of pedestrian i and j,
and n;; is the normalized vector pointing from pedestrian j
to i. In body force and sliding friction force, g (x) is zero if
the two pedestrians do not touch each other, and otherwise
it equals to x. k and x are body elasticity coefficient and
sliding friction coefficient, t;; is the tangential direction, and
Av%; = (vj — Vi) - tij is the tangential velocity difference.

The last term f;y is generated by the interaction between
pedestrian i and the walls:

fiw = Ajexp[(ri — diw)/ Bi| miw + kg (ri — diw) mjw
— kg (ri —diw) (Vi - tiw) tiw

a7)

(18)

where Ai exXp [(ri — diW)/Bi] nw, kg (ri — diW) nw, and
kg (ri —diw) (vi - tiw) tiw represents a repulsive interaction
force, a body force, and a sliding friction force between
pedestrian i and the wall W. Here, d;w is the distance to
the wall W, n;w and t; are the directions perpendicular and
tangential to it, respectively.

IV. NUMERICAL EXPERIMENTS
A. Experiment Setup

Beijing, as the capital of China, adopts the Urban Rail
Transit (URT) to transport an average of 10 million passen-
gers per day [36]. As important transportation hubs, subway
stations play a vital role in serving passengers on and off
subways. However, a host of pedestrians gather in subway
stations during specific periods (i.e., morning and evening
peak periods) [37]. The increase in crowd density makes
subway stations become potential high-risk areas of crowd
disasters [38], especially when an emergency occurs [39], [40].
Thus, we select the Heping Xiqiao subway station in Beijing

as a specific scenario to simulate the evacuation process using
our model. Note that the emergency is assumed to occur after a
train left the subway station, the existing passengers are taken
as the simulation objects and new arrivals are prohibited.

The 3D Max structure diagram of Heping Xiqiao subway
station is shown in Fig. 1(a), and we transform it into the 2D
floor plan of two floors in Fig. 1(b). As the complexity of the
real scenario, the influence of AFC gates, stairs and escalators
is neglected and the pedestrian movement in these places is
regarded as the same as that on platforms. The black bars or
blocks represent walls or obstacles, and the green strip areas
correspond to the two exits on the second floor. The first floor
and second floor are connected by two stairs, in which red and
cyan areas represent stairs up and down, respectively. In our
case, the pedestrian spawning area is the remaining area in
the 2D floor plan. Note that the 2D floor plan in Fig. 1(b) is
scaled in proportion to the real scenario in Fig. 1(a), where
each pixel corresponds to a square with a 0.15 m side.

Regarding the parameter setting in our simulation experi-
ments, Table I indicates the values of partial parameters in
the BHSFM, which are based on the existing literature. The
scale factor #; in behavioral heterogeneity coefficient denotes
the ratio of the desired speed in normal and the maximum
desired speed in panic. Since the observed free speed under
normal is 0!°" ~ 1m/s and under nervous or panic is
o™ > 1.5m/s [41], thus a preliminary range of the scale
factor can be obtained by 6; < 0.67. For simplicity, we hold
6; = 0.5 for each individual here. The remaining parameters in
our model are given according to the simulation requirements
in the following subsections.

B. Effect of Behavioral Heterogeneity Coefficient on Crowd
Evacuation

To explore how the behavioral heterogeneity coefficient
affects crowd evacuation, we adopt the BHSFM to simulate
the collective motion of pedestrians in the subway station.
In our case, the risk index is defined as 4 = 0.5 to construct
a moderate level of emergency. Given that crowds in the
subway station are mixed by different types of pedestrians,
we assume the physique coefficients of overall pedestrians
follow the “approximate Gaussian distribution” at the initial
time, where a = f = 4, the location parameter 4 = 0 and the
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Fig. 2. Snapshots of crowd evacuation in the subway station under the effect of behavioral heterogeneity coefficient. The escaping pedestrians are represented
by solid circles, the color of which reflects the value of behavioral heterogeneity coefficient.

First floor L H(t)
€« 0.0 1.0 20 3.0

! 1i Second floor
—_—

Time (

Pedestrian index

Fig. 3. Temporal evolution of behavioral heterogeneity coefficient for each
pedestrian. The pedestrian index 0-200 and 200-400 respectively correspond
to each pedestrian spawned on the first floor and the second floor at the initial
time.

scale parameter ¢ = 3. The attenuation rate of cooperation
probability is set to w; = 1.25, implying the probability
of cooperation and competition is approximately equal when
A = 0.5. Besides, the initial number of pedestrians in the
subway station is fixed as N = 400, in which each floor is
randomly distributed with 200 pedestrians.

Based on the above settings, the snapshots of crowd evac-
vation in the subway station under the effect of behavioral
heterogeneity coefficient are shown in Fig. 2. The solid circles
with different colors correspond to the pedestrians with various
values of behavioral heterogeneity coefficient. The impact
of behavioral heterogeneity creates the difference in desired
speed of each pedestrian, which forms a more realistic and
elaborate evacuation process. Fig. 3 illustrates the temporal
evolution of behavioral heterogeneity coefficient for each
pedestrian. These dynamic characteristics are attributed to the
combined effect of physiology and psychology attributes when
surrounding environments and individuals change incessantly,
in agreement with the viewpoints in the previous research [26].

To quantitatively analyze the effect of behavioral hetero-
geneity coefficient on crowd evacuation, the temporal average
of behavioral heterogeneity coefficient for pedestrian i is
calculated as follows:

1
1 —1o

> Hi (1)

1=ty

(H (1)) = (19)
where #; represents the exited time of pedestrian i. Analo-
gously, the temporal average of actual speed for pedestrian i
is given by the following:

1 <
(v () = — D vi (1) (20)

=ty

- v - v - v 140 - r - v r
Simulation data _ fist floor . Simulation data _ first floor
1.6} o Simulation data_second fioor | ® % .. g® ® Simulation data _ second floor
— Linear fit_ totalify . s Linear fit_ first fioor
.o —
4 ° . ORI Linear fit _ second floor
©
£
c
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Fig. 4. Quantitative analysis of the effect of behavioral heterogeneity
coefficient on crowd evacuation. (a) Relationship between the temporal
average of behavioral heterogeneity coefficient and the temporal average of
actual speed. (b) Relationship between the temporal average of behavioral
heterogeneity coefficient and the evacuation time. The points with yellow
and purple colors represent the simulation data corresponding to pedestrians
spawned on the first floor and the second floor at the initial time, respectively.

where v; (f) = |v; (t)]| is the magnitude of actual speed.
Notably, (v; (¢)); is found to have a high correlation r =
0.79 with (H; (¢)); in Fig. 4(a), which preliminarily demon-
strates the interdependency between the actual escape speed
and the behavioral heterogeneity coefficient. Fig. 4(b) illus-
trates this interdependency creates a relatively high correlation
r1 = 0.68 between the evacuation time of pedestrians spawned
on the first floor with (H; (t));, whereas pedestrians spawned
on the second floor are limited by the overclose distance to
exits, with a relatively weak correlation r, = 0.42. Nonethe-
less, these correlations still reveal a significant influence of
behavioral heterogeneity coefficient on evacuation time.

Moreover, two evaluation indicators are defined to measure
the differences in crowd evacuation simulated by SFM and
BHSFM. Note that the desired speed for each pedestrian is
equal to v? = 2m/s in SFM. One is the temporal variance of
actual speed for pedestrian i, which is expressed by:

1

> [oi @) = (o )]

1=ty

Vari [v; (t)] =

21
— 10 2D

Another is the spatial variance of actual speed for overall
pedestrians at time 7, which reads:

1
Vanlo 0l =3 3 [ 0 = on] @

i=1
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Fig. 5. Typical temporal-spatial differences of actual speed simulated by
SFM and BHSFM. (a) Box plot of the temporal variance of actual speed.
(b) Box plot of the spatial variance of actual speed. The points with yellow
and purple colors constitute the distributions of simulation data corresponding
to SFM and BHSFM, respectively.

Here, N; is the number of remaining pedestrians at time ¢, and
(-); denotes the average over remaining pedestrians. Both from
the time and space dimensions in Fig. 5(a) and 5(b), larger
variations of actual speed are shown by the box plots and
the distributions of simulation data corresponding to BHSFM.
Accordingly, the BHSFM performs more diversified actual
speed differences compared with the SFM, which is caused
by the integration of behavioral heterogeneity coefficient.

C. Influence of Dynamic Risk Indexes on Crowd Evacuation

Given that the risk index 4 is considered as a constant in the
previous experiment, whereas it tends to change dynamically
in real life, and the temporal and spatial characteristics of
risk perception exist throughout the evacuation process [42].
On the one hand, if the hazard source exists but is not in the
subway station, it could conceivably be hypothesized that the
risk index increases gradually with time ¢ and then maintains
invariant. This is similar to the situation that pedestrians
progressively perceived the increasing degree of emergency,
which is expressed in the form of a Sigmoid function:

l;nax
1 4+exp[—k (t —1.)]

where k; is the ascending gradient, A;"®* denotes the maximum
risk index over time, and 7. is the moment corresponding
to the slope increases the fastest. On the other hand, if a
hazard source emerges in the subway station, there may exist a
certain relevance between the risk index and the distance to it.
A closer distance to the hazard source generally corresponds
to a higher risk index. Thus, similar to Equation (23), a spatial
expression that describes the risk index as a function of the
normalized distance to hazard source is given by:

Amax
A(d") = 4
1+ exp [kq (" —d?)]
Here, k4 is the descending gradient, ig‘ax holds the maximum
risk index in the scenario, d" indicates the normalized distance
to the hazard source on this floor, and 4 is the normalized
distance corresponding to the slope decreases the fastest.
To perform the curves of dynamic risk indexes, the values
of relevant parameters are given below. We assume that the
maximum risk index A" = 1 over time, and the maximum

A(t) =

(23)

(24)
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Fig. 6. Temporal-variant and spatial-variant risk indexes. (a) Risk index as a
function of time without hazard source in the subway station. (b) Risk index
as a function of the normalized distance to hazard source in the scenario. The
gradient color scale marks the risky degree of dynamic risk indexes.

risk index A3 = 1 when the pedestrian is closest to the
hazard source. With the ascending gradient k; = 0.3 and the
descending gradient k; = 10 we can reproduce the relatively
reasonable dynamic tendency of these curves. The parameter 7.
mainly determines the function phase of the temporal-variant
risk index, we set its value as 7. = 20, 30, 40 and the curves
of the temporal-variant risk index are depicted in Fig. 6(a).
Another parameter d/' mainly affects the function concavity of
the spatial-variant risk index, and Fig. 6(b) shows the curves
of the spatial-variant risk index when the value is taken as
d! = 0.4,0.5,0.6. Note that the functions of dynamic risk
indexes, A (1) and 4 (d), whose shapes can be adjusted by
these parameters according to actual conditions.

To display the evacuation process affected by dynamic risk
indexes, we select two cases in Fig. 6 that the temporal-
variant risk index (f, = 30) and the spatial-variant risk index
(d? = 0.5), other conditions remain the same as that in
the previous section. Fig. 7(a) shows the escape behavior for
each pedestrian is universally gentle in the initial phase due
to the inconspicuous degree of emergency, while pedestrians
impulsively accelerate to escape from the subway station
during the risk index transiting from mild to severe level over
time. This is consistent with empirical observations such as
different escaping behaviors between the precursory period
of an incident and the period after the alarm sounds. For
another situation, the hazard source is located on the second
floor, as shown by a red circular area in Fig. 7(b). Note that
the spatial-variant risk index is assumed to target pedestrians
on the second floor, while others on the first floor only
perceive a mild risk level (4 = 0.2) since the hazard source is
invisible to them. As we expect, pedestrians on the first floor
hold relatively calm escape behavior, whereas pedestrians on
the second floor have faster speed if they are closer to the
hazard source. This triggers an interesting phenomenon that
the pedestrians close to the hazard source push their front
pedestrians for the purpose of quickly escaping the danger
zone, similar to the crowd evacuation phenomenon when the
World Trade Building collapsed in the 9/11 terror attacks.

Turning now to the experimental evidence on the tem-
poral evolution of behavioral heterogeneity coefficient under
different types of dynamic risk indexes. The increasing
temporal-variant risk index exacerbates the fluctuation degree
in physiology attributes and raises the stress level and the
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Fig. 7. Snapshots of crowd evacuation in the subway station under different types of dynamic risk indexes. (a) Under conditions of the temporal-variant

risk index. (b) Under conditions of the spatial-variant risk index. The red circular area denotes the location of the hazard source. The escaping pedestrians
are represented by solid circles, the color of which reflects the value of behavioral heterogeneity coefficient.

competition probability in psychology attributes. These factors
collectively lead to a sudden enhancement of the behavioral
heterogeneity coefficient during the phase from 20 s to 40 s in
Fig. 8(a). Similarly, Fig. 8(b) displays the temporal evolution
of behavioral heterogeneity coefficient under conditions of
the spatial-variant risk index. The physiology and psychol-
ogy attributes may further be stimulated to a more sensitive
stage as pedestrians approach closer to the hazard source
to some extent. The behavioral heterogeneity coefficients
increase rapidly during this stage, while the period arriving at
the stage is different for each pedestrian. This also accounts for
the phenomenon emerging in Fig. 7(b), because the pedestrians
near the hazard source are still at a stage with relatively higher
behavioral heterogeneity coefficients.

Furthermore, the curves of evacuation efficiency in Fig. 9
reveal how different types of dynamic risk indexes affect the
evacuation process. Under conditions of the temporal-variant
risk index, the evacuation efficiency in Fig. 9(a) is relatively
slow in the initial phase because pedestrians barely feel the
urgency and keep the evacuation pattern in normal, whereas
it grows rapidly in the subsequent phase since pedestrians
perceive the intensely increasing risk, tallying with the circum-
stances in Fig. 7(a). Notably, the parameter ¢, mainly affects
the period, rather than the degree, of significant change in
evacuation efficiency. Under conditions of the spatial-variant
risk index, as shown in Fig. 9(b), the evacuation efficiency
maintains a relatively smooth change tendency over time. The
explanation for this might be that the existence of the hazard
source promotes the evacuation efficiency on the second
floor and avoids further congestion caused by the increase

AII H.(t)
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0.0 1.0 2.0 30 240 '

} L Second floor
—_—>

200
Pedestrian index

AII H(t)

First floor
0.0 1.0 2.0 30 240 '

{ 1 | Second floor
|—>

Pedestrian index

Fig. 8. Temporal evolution of behavioral heterogeneity coefficient for each
pedestrian under different types of dynamic risk indexes. (a) Under conditions
of the temporal-variant risk index. (b) Under conditions of the spatial-variant
risk index. The pedestrian index 0-200 and 200-400 respectively correspond
to each pedestrian on the first floor and the second floor at the initial time.

in the number of pedestrians. Besides, the parameter d has
a primary influence on the degree of significant change in
evacuation efficiency, with a larger d!! promotes the evacu-
ation efficiency more evidently. In summary, the evacuation
efficiency is dependent on the types and features of dynamic
risk indexes to a great extent.

D. Analysis of Crowd Evacuation Under Different Numbers
of Pedestrians

To our knowledge, the number of pedestrians at Heping
Xiqgiao subway station is different during various periods of
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Fig. 9. Evacuation efficiency as a function of time under different types
of dynamic risk indexes. (a) Under conditions of the temporal-variant risk
index. (b) Under conditions of the spatial-variant risk index. The shape points
represent the mean in 50 trials.

the day. It is necessary to analyze the evacuation process
under different numbers of pedestrians using the BHSFM,
especially for the morning and evening peak periods in which
the number increases sharply. Before conducting the numerical
experiment, we first argue the setting of parameters in our
simulation. The initial number of pedestrians in the subway
station is set to N = 200, 400, 600, 800, where the number
on each floor accounts for half of the total. Note that other
parameters remain unchanged, including the risk index is fixed
as 4 = 0.5 for controlling the single variable.

The first issue in this numerical experiment seeks to deter-
mine how different numbers of pedestrians affect the variation
degree of behavioral heterogeneity coefficient. For the evacu-
ation process of a single pedestrian i, the temporal variance
of behavioral heterogeneity coefficient can be quantified as a
measurement indicator, which is given by the following:

4

> Hi (1) -

1=ty

(25)

Var; [H; (t)] = p (H; (t)>t]2

1
In this case, as shown in Fig. 10(a), the trend of the box
plot reflects the increasing number of pedestrians corresponds
to the overall growth of temporal variance, indicating that
the behavioral heterogeneity coefficients transform more fre-
quently. Additionally, regarding the evacuation process at a
specific time ¢, the spatial variance of behavioral heterogene-
ity coefficient is defined as another quantitative indicator as
follows:

N;

1
Var, (H; 01 = 5 3 [Hi () = (H; )]

i=1

(26)

From a spatial aspect in Fig. 10(b), the increasing trend
of spatial variance reveals a larger difference in behavioral
heterogeneity coefficients as the number of pedestrians raises,
in agreement with the realistic situation.

The next target of this experiment is concerned with the dis-
tribution of displacements, where the displacement is regarded
as the distance between two subsequent stops (defined by
the actual speed below 0.1 m/s). Fig. 11 shows there exists
a power law of displacements in the double logarithmic
coordinate system, consistent with the previous findings [16].
Owing to the fact the increasing number of pedestrians creates
a greater degree of congestion, the exponent increment of
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Fig. 10.  Typical temporal-spatial differences of behavioral heterogeneity

coefficient under different numbers of pedestrians. (a) Box plot of the temporal
variance of behavioral heterogeneity coefficient. (b) Box plot of the spatial
variance of behavioral heterogeneity coefficient. The points with various colors
constitute the distributions of simulation data under different numbers of
pedestrians.

power law reveals that more small-scale displacements are
generated, which is reflected in the simulation process of
SFM and BHSFM. However, the BHSFM produces higher
frequencies of small-scale displacements compared with the
SFM, the potential explanation for it might be related to more
pushing behaviors caused by the expanded temporal-spatial
differences in behavioral heterogeneity coefficients, which also
echoes with the observed traffic perturbations affected by the
speed variability [43].

The direct impact of higher frequencies of small-scale dis-
placements is to trigger more severe extrusions and even lead
to crowd disasters. Therefore, finding the periods and areas of
a potential crowd disaster is significant for the management
of crowd evacuation in specific scenarios [44]. Here, several
critical definitions are introduced for our analysis. The local
density at place x and time ¢ is expressed by:

p 1) =D f(dix,1) 27)

where djx is the distance between place x and pedestrian i,
and f (d) is a Gaussian distance-dependent weight function:

d2
7)

where R denotes a measurement parameter, the reasonable

1
fd)= —R2SXP (— (28)

value of which is R = 0.7m. Besides, the local speed is
defined via the weighted average as follows:
i dix, t
V(x, £ = 21 INAl f( ixs 1) (29)
2. [ dix, 1)

Regarding extra details of the above definitions see [16], [17].

To determine the periods of a potential crowd disaster during
the evacuation process, the “pressure” [16] as a function of
time ¢ is calculated by:

P (1) =p @) Var [V (x,1)]

Here, p (t) = (p (x,1))4 is the spatial average of the local
density, and Var, [V (x,1)] = <[V (x,1) — (V (x, t))x]2>X is
the spatial variance of the local speed at time f. Fig. 12
presents the duration of high “pressure” values exists on
the second floor is much longer than that on the first floor,

(30)
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Fig. 12.  Temporal dynamics of “pressure” under different numbers of
pedestrians. (a) N = 200. (b) N = 400. (c) N = 600. (d) N = 800. The black
dashed line corresponds to a critical value, in which the “crowd turbulent”
phenomenon was observed when the “pressure” exceeds the value 0.02/s2.
The shaded areas mark the periods when the critical value are exceeded.

because more serious congestion is caused by the influx of
pedestrians from the first floor. Note that an implication of
the black dashed line is the critical value, and the potential
“crowd turbulent” phenomenon might be observed when the
“pressure” exceeds it [16], the periods of which are marked by
the shaded areas. With successive increase in the number of
pedestrians, these periods appear more frequently and almost
emerge throughout the first half of the evacuation process
when N > 600 in Fig. 12(c) and 12(d). These results have
important guidances for determining the periods of a potential
crowd disaster under different numbers of pedestrians.
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Turning to the space dimension, the “crowd pressure” [17]
that used to ascertain the areas of a potential crowd disaster
is given by the following:

Cx)=px) Varg [V (x,1)] 31

where p (x) = (p (x, 1)), is the temporal average of the local
density, and Varg [V (x,1)] = <[V (x,1) — (V (x, t)),]2> is
the temporal variance of the local speed at place x. Fig. 13
shows the spatial characterization of “crowd pressure” under
different numbers of pedestrians. It is obvious that the areas of
relatively higher “crowd pressure” are concentrated near the
entrance of the staircase on the first floor and the unilateral
corridor from the export of the staircase to the exit on the
second floor. Notably, the areas with a high risk of falling
(in dark red) are expanded as the number of pedestrians
increases, denoting the areas of a potential crowd disaster.
The identification of these high-risk areas provides relevant
evidence for formulating reasonable evacuation schemes in this
subway station.

V. CONCLUSION

In this paper, the BHSFM is designed to provide a general
framework for describing the pedestrian heterogeneity during
evacuation process. Specifically, a behavioral heterogeneity
coefficient, involving emergency environments and individual
differences, is incorporated into the SFM to reveal the het-
erogeneity characteristics of pedestrian behavior. After con-
ducting numerical experiments in the simulation scenario of
Heping Xiqiao subway station, the most primary conclusions
emerging from this study are summarized as follows:

(1) The linear interdependency between the actual escape
speed and the behavioral heterogeneity coefficient has a sig-
nificant influence on the evacuation time of pedestrians, which
achieves a more reasonable and elaborate evacuation process in
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the subway station by introducing the behavioral heterogeneity
as a quantitative indicator.

(2) There emerge some interesting evacuation phenomena
by integrating temporal-spatial dynamic risk indexes, such
as the impulsive acceleration behavior during the risk index
transiting from mild to severe level over time, and the pushing
behavior from pedestrians close to the hazard source to the
pedestrians ahead of them.

(3) Compared with the SFM, our model produces higher
frequencies of small-scale displacements due to more pushing
behaviors, and it becomes more prominent as the number
of pedestrians increases. Besides, the BHSFM indicates the
periods and areas of a potential crowd disaster for the crowd
management during evacuation process.

The above conclusions contribute in several ways to our
understanding of pedestrian heterogeneity and provide a basis
for guiding crowd evacuation in specific scenarios. In terms of
route planning, designing fast and dedicated evacuation routes
for those pedestrians with lower behavioral heterogeneity
coefficients is worth deeply considering [45]. Regarding the
evacuation schemes, assigning reasonable emergency signs
is essential to reduce the periods and areas of a potential
crowd disaster [46]. Apart from the management of crowd
evacuation, our model also sheds new light on other practical
applications, such as improving the building structures by
considering the impact of collective behavior [47], simulating
the human-vehicle interaction phenomenon under the pushing
behavior of pedestrians at the rear, as well as inspiring the
heterogeneous expressions of pedestrian groups [48], vehicles
[49], and roads [50] for more suitable traffic control in compli-
cated scenarios. These viewpoints have significant implications
for the insights of distinctive collective patterns by abandoning
the traditional homogeneity notions.

Although the BHSFM has been proved to be an effective
model for simulating crowd evacuation, its limitations are
listed as follows. First, this model ignores the behavioral
heterogeneity in terms of information perception [51], [52],
such as visual and auditory information, which can be regarded
as a high-dimensional interaction process between the envi-
ronment and individuals. Second, the dynamic risk index is
assumed as a simplified Sigmoid function of time or space,
whereas the dynamics of emergency environment may be quite
complicated in real situations, therefore combining with the
research (i.e., fire spread, gas diffusion) in other fields is nec-
essary [53]. Notwithstanding these limitations, this work offers
valuable insights into the refined expression of behavioral
heterogeneity in modeling crowd motion. In the future, the
precise mechanism of heterogeneity in human crowds remains
to be elucidated. We also expect that our model can open new
perspectives in establishing more realistic models of collective
motion.
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